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Figure 1: We present a fast multiple scattering extension to the classical GGX model [Walter et al. 2007]. Traditionally, the GGX
model only assumes single bounce of light transport; this assumption leads to a loss of outgoing radiant flux (and therefore a
darkening of rendered images). Our method approximates the energy from second bounce light transport, which produces
more saturated colors and visually pleasing results (b) compared with the darker response of the classical model (a); 𝛼 is the
roughness. Images rendered with Mitsuba 0.6 [Jakob 2010]. Dragon and Bunny: © Stanford Computer Graphics Laboratory
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ABSTRACT
Classical microfacet theory suffers from energy loss on materi-
als with high roughness due to the single bounce assumption of
most microfacet models. When roughness is high, there is a large
chance of multiple scattering occurring among the microfacets of
the surface. Without explicitly modelling for this behaviour, rough
surfaces appear darker than they should. To address this issue, we
present a novel method to estimate the multiple scattering contribu-
tion from a second light bounce. Our method is inspired by Zipin’s
geometric construction approach, which simplifies the calculation
of the light transport inside a V-groove cavity. Our experimental
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results demonstrate that our method is visually pleasing, physically
plausible, and artifact-free compared to recent multiple scattering
works. Additionally, the low computational cost makes our model
suitable for real-time rendering.
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• Computing methodologies→ Reflectance modeling.

KEYWORDS
BRDF, BSDF, multiple scattering, microfacet theory, microfacet
distributions, appearance representation, geometry

ACM Reference Format:
Enrique Rosales, Fatemeh Teimury, Joshua Horacsek, Aria Salari, Xuebin
Qin, Adi Bar-Lev, Xiaoqiang Zhe, and Ligang Liu. 2023. Fast-MSX: Fast Mul-
tiple Scattering Approximation. In SIGGRAPH Asia 2023 Conference Papers
(SA Conference Papers ’23), December 12–15, 2023, Sydney, NSW, Australia.
ACM, New York, NY, USA, 9 pages. https://doi.org/10.1145/3610548.3618231

1 INTRODUCTION
Material representation is a fundamental concept in computer
graphics and is a critical component of all photo-realistic offline
and real-time renderers. In order to achieve realistic renders, con-
temporary material models are typically physically based [Walter
et al. 2007]. These models commonly rely on microfacet theory
as a basis for their underlying mathematical formulation. At its
core, microfacet theory [Cook and Torrance 1982] assumes that the
microscopic surface of a rough material is irregular (Fig. 2) and it
is modeled as composed of small planar mirrors, each acting as a
perfect specular reflector. Modelling the interaction of light at a
microscopic level is challenging, thus, most models resort to some
form of simplification of the microfacet geometry. These simplifica-
tions lead to computationally tractable shading models.

One key component of the microfacet model is the geometric
“masking-shadowing” term, which accounts for localized occlusion
amongmicrofacets. This model is a bidirectional function composed
of two terms. Loosely speaking, the first term is the probability that
light travelling towards a microfacet is not blocked by some other
microfacet before it hits the surface. The second term represents
the probability of the reflected rays not being blocked by another
microfacet after reflection. This naturally excludes the case in which
light travels between multiple microfacets before reaching the eye
(multiple scattering), which can have a profound impact on the
appearance of the rendered material [Heitz 2014].

In this work, we develop an empirically tuned shadingmodel that
compensates for the missing energy in the Cook-Torrance [1982]
single bounce approximation.We start by relaxing a V-cavitymodel [Tor-
rance and Sparrow 1967; Zipin 1966], and extending the cavities
to allow for more light transfer. Our main contribution is a novel
geometric model for two bounce scattering that is

(1) easy to implement; our approximation is a simple additive
term that relies on simple operations to compute

(2) real-time capable; most other multiple scattering methods
require some form of iteration (i.e. Monte Carlo simulation)

(3) noise free and artifact free; by virtue of simplicity, since we
rely on no stochastic numerical processes, we avoid unpleas-
ant artifacts (i.e. fireflies and noise).

(a) (b)

≈ 100 μm ≈ 10 μm

Figure 2: Scanning electron micrographs of tetragonal crys-
tals of Weddellite (a) [EK 2012], and an orthopaedic titanium
screw with “volcano” pores coated with zinc oxide nanopar-
ticles (b) [Woźniak 2014] reveals the complex geometry of
real materials with high roughness.

We also provide a qualitative and quantitative assessment of our
methodology.

2 BACKGROUND
The Cook and Torrance [1982] model describes the interaction
between light and microfacet geometry with:

𝑓 (𝑣, 𝑙, 𝛼) = 𝐷 (ℎ, 𝛼)𝐺 (𝑣, 𝑙, 𝛼)𝐹 (𝑣, ℎ, 𝑓0)
4(𝑛 · 𝑣) (𝑛 · 𝑙) , (1)

where 𝑛, 𝑣 and 𝑙 represent the normal, view and light direction
vectors; and 𝐷 , 𝐺 and 𝐹 represent the normal distribution, the geo-
metric attenuation and the Fresnel reflectance terms, respectively.
The 𝐷 term is a micronormal distribution function that models
the concentration of microfacets whose normal is aligned with the
half vector ℎ = 𝑙 + 𝑣/| |𝑙 + 𝑣 | | (Fig. 3a). A widely used version of
the 𝐷 term is the Trowbridge-Reitz model [1975] introduced by
Blinn [1977], and defined in its modern form called GGX by Walter
et al. [2007].

The 𝐹 term models the amount of light that is reflected (instead
of absorbed) from the microfacets.

The 𝐺 term models the concentration of microfacets that are
visible from both 𝑣 and 𝑙 directions. As seen in Fig. 3a, only micro-
facet𝑚4 is lit and visible from the camera thus, the only one able to
transmit energy. There are two popular versions of the 𝐺 term, the
separable also called uncorrelated Smith in which each direction is
computed separately and then multiplied together. And the height-
correlated Smith that was demonstrated by Heitz [2014] to produce
better results. In both cases, the major limitation of the geometry
term 𝐺 is that ignores cases in which light may bounce between
multiple facets of the surface before ultimately leaving the surface
(i.e. multiple scattering). As seen in Fig. 3b, a microfacet𝑚3 that is
visible from the camera can indirectly observe the light reflected
from another microfacet𝑚1, even if𝑚3 is directly occluded from
the light. The 𝐺 formulation does not account for this occlusion,
as shadowed microfacets are directly discarded. Thus, materials
with higher roughness may appear darker than expected due to the
energy lost from this phenomenon [Heitz 2014].

3 RELATEDWORK
Several attempts have been made to introduce an extra energy cor-
rection term. For instance, Burley [2012] adds a simple sheen effect
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Figure 3: Microfacets𝑚1 and𝑚2 are lit but not visible from
the camera; Microfacet 𝑚3 is visible from the camera but
occluded from the light (shadowed). In a single-scattering
approach (a), only the microfacet𝑚4 is aligned with the half
vector, lit and visible from the camera. Accounting for a
second bounce multiple scattering (b) allows to get the light
reflected from microfacet𝑚1 to microfacet𝑚3 and then to
the view vector 𝑣 .
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Figure 4: (a) Zipin’s [1966] geometric construction works
by creating a series of reflected virtual V-grooves inside a
unitary circle. By extending the light vector 𝑙 in −𝑙 direction,
the places in which that ray crosses the V-grooves’ facets
(points 𝑏1, 𝑏2, and 𝑏3) correspond to the light bounces inside
the original V-groove (OLR). The light transport path is then
represented as the thick red line that goes from 𝑙 to 𝑣 in
three bounces. To compute this method, we need the angles
from 𝑙 and 𝑣 to the normal 𝑛 (\𝑛𝑙 , \𝑛𝑣) and the angle of the
V-groove opening \𝑔. (b) In 3D, Lee et al. [2018] and Xie and
Hanrahan [2018] project the vectors 𝑙 and 𝑣 into the plane
𝐵 (grey semicircle). Which is the bisector plane for 𝑙 and 𝑣
formed by the normal 𝑛 and the half-vector ℎ.

based on a Fresnel Schlick approximation [Schlick 1994], but the
final result is not physically plausible for all roughness values. Kulla
and Conty [2017] inspired by Kelemen and Szirmay-Kalos [2001]
and Jakob et al. [2014] proposed a diffuse term to model the missing
energy. Similarly, Hill et al. [2020] compensates the energy loss
by introducing a Lambertian term that models multiple scattering
within the microsurface. Later, Turquin [2018] based on the work of
Kulla et al. [2017] scales the single scattering lobe to approximate
multiple scattering. This work can properly compensate the single
bounce energy loss and color saturation which in some cases could
be an optional feature for artistic purposes. This approximation is
suitable for real-time rendering, but is not reciprocal, a limitation
that our proposed method also has.

Alternative lines of works generalize microfacet models by in-
corporating multiple scattering [Bitterli and d’Eon 2022; Dupuy
et al. 2016; Heitz et al. 2016; Lee et al. 2018; Wang et al. 2022; Xie
and Hanrahan 2018]. Heitz et al. [2016] offers a volumetric so-
lution based on the Smith self-shadowing model, that accurately
models multiple scattering and color saturation by computing an
approximation of multiple-scattering with stochastic path tracing.
Although Heitz et al. [2016] is reciprocal, energy-conserving, and
supports the anisotropic GGX and Beckmann distributions, it is
computationally expensive and suffers from noise due to its stochas-
tic evaluation. Thus, not suitable for real-time rendering. Dupuy
et al. [2016], further explores the connection between microflake
theory and the standard microfacet model. Later, Wang et al. [2022]
proposed an approximate position-free approach which eliminates
the need to compute the position of each surface sample, allowing
for faster computation of multiple bounces. The method is based
on Heitz et al. [2016] and Dupuy et al. [2016], but produces almost
noise-free results with low sample rates. Concurrent to Wang et
al. [2022], Bitterli and d’Eon [2022] propose a position-free path
integral for evaluating the scatter distribution in a homogeneous
slab. Their solution preintegrates collision distances to simplify
the Monte Carlo simulation allowing less variance than Heitz et
al. [2016], Dupuy et al. [2016] and Wang et al. [2022].

On the other hand, Lee et al. [2018] and Xie and Hanrahan [2018]
illustrate an efficient closed-form solution for multiple scattering
based on the Cook-Torrance model [1982] and Zipin’s [1966] geo-
metric construction (Fig. 4). The models of Lee et al. [2018] and Xie
andHanrahan [2018] are reciprocal, energy conserving, and support
anisotropy. However, they have a singularity in the direction of mir-
ror reflection, which leads to unrealistic artifacts for high roughness
materials (Fig. 5). Our work is inspired in Lee et al. [2018] and Xie
and Hanrahan [2018]. Beyond close-form solutions, learning-based
methods for approximating multiple scattering [Xie et al. 2019]
have recently gained momentum and are a promising direction for
future research.

4 OUR METHOD
Our goal is to approximate the missing multiple scattering energy
and add it to a standard single-scattering Cook-Torrance specular
lobe. For the single-scattering lobewe use: GGX distribution [Walter
et al. 2007] for the𝐷 term, uncorrelated Smith for the𝐺 term [Heitz
2014], and Schlick [1994] approximation for the 𝐹 term. We do this
by first modelling the two bounce light transport for V-cavities,
we then relax our model to introduce additional energy, which
ultimately compensates for additional missing bounces within a
localized region on a surfaceM. Fig. 13 shows that, in the range
from 𝛼 = 0.3 to 𝛼 = 0.7 1, most of the transmitted energy is carried
by the first and second bounces. Thus, we focus on the second
bounce, adding a small amount of additional energy to compensate
for higher order bounces. Empirically, our second bounce accounts
for most of the missing energy, avoiding additional calculations for
further bounces, and drastically simplifying our implementation.
To model second bounce energy, we appeal to V-cavity theory, but
discard two assumptions.

1The most realistic roughness values for most materials [Jakob 2010]
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First, we do not assume that all V-cavities are aligned with the
surfaceM. Second, we do not assume that V-cavities are symmetric.
Discarding these two assumptions leads to a more realistic model
of the behaviour of the microfacets on the surfaceM). Other works
that make these two assumptions [Lee et al. 2018; Xie and Hanrahan
2018], have the ability to model an arbitrary number of bounces
within a V-cavity, but have a higher specular response when the
surface roughness 𝛼 is high. This is inherently the incorrect be-
haviour, since a surface with high roughness should scatter light
over a wider angle, this is demonstrated in Fig. 5.

(a) [Lee et al. 2018] (b) Ours (c) [Heitz et al. 2016] 

Figure 5: (a) Lee et al. [2018] method, shows a high portion
of the microfacets reflecting radiance towards the mirror
reflection in high roughness values (𝛼 = 0.9). In contrast, our
method (b) correctly approximates the light scattering, and
it is visually similar to Heitz et al. [2016] (c).

We seek an indirect multiple scattering specular correction term
that is artifact-free, physically plausible, suitable for real-time ren-
dering, and easy to implement (Fig. 1). We proceed by describing
how our assumptions prescribe the behaviour of the surface at
the microfacet level. We then use the intuition gained to model
new masking and distribution terms that, when combined with
an appropriate Fresnel term, produce an estimate of the missing
energy.

4.1 Computing the V-groove Coordinate Frame
We start our discussion by finding the V-cavities that are able to
transmit light from 𝑙 to 𝑣 in exactly two bounces. With our current
assumptions there are infinitely many V-cavities with this property.
Rather than using Zipin’s[1966] construction (Fig. 4) to construct
second bounce paths within infinitely many V-grooves, we strictly
assume the second bounce direction 𝑏 is aligned with the horizontal
axis (i.e. ⟨𝑏 · 𝑛⟩ = 0, see Fig. 6). This assumption drastically reduces
the complexity of our formulation; with this assumption there are
exactly two such V-cavities that transmit light from 𝑙 to 𝑣 (one
that has an acute V-grove angle and another that is obtuse). If a
V-groove has an obtuse cavity angle \𝑔 , then we discard this case,
since it is likely covered by the original Cook-Torrance term.

Without loss of generality, we initially choose a coordinate frame
defined by 𝑛 and 𝑠 (with 𝑠 B ((𝑙 × 𝑣) × 𝑛)) as in Fig. 6. If 𝑙 inter-
sects with𝑚𝑙 and reflects into ray 𝑏, then𝑚𝑙 ’s normal direction is
uniquely constrained by \𝑙 + 2\𝑏 = 𝜋 , where cos(2\𝑏 ) = 𝑙 · 𝑏 is the
inner reflection angle, it follows from geometric construction that
\𝑙𝑟 = \𝑏 . A similar derivation gives \𝑣𝑟 for𝑚𝑟
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Figure 6: The first step of our method consists of defining a
microfacet𝑚𝑙 that is able to reflect energy from the 𝑙 vector
to a horizontal bouncing path 𝑏, and a microfacet 𝑚𝑟 that
is able to reflect energy from the same horizontal bouncing
path 𝑏 to the vector 𝑣 . These microfacets are defined by their
angles with respect to the normal 𝑛 (\𝑙𝑟 and \𝑣𝑟 ). The angle of
the V-groove opening \𝑔 is then the sum of these angles. The
bisecting axis of our V-groove cavity (denoted by 𝑐), defines
the coordinate frame in which we compute our variant of
the Zipin’s method.

\𝑙𝑟 =
𝜋 − \𝑙

2
, \𝑣𝑟 =

\𝑣

2
. (2)

From this, it naturally follows that

\𝑔 = \𝑙𝑟 + \𝑣𝑟 (3)

simplfying this futher yeilds

\𝑔 =
1
2
(𝜋 + \𝑣 − \𝑙 ) . (4)

\𝑔 =
1
2
(𝜋 − \𝑣𝑙 ) . (5)

Where \𝑣𝑙 is the angle between 𝑣 and 𝑙 so we no longer need the
vector 𝑠 . An interesting note here is that this identity holds regard-
less of the orientation of the cavity. That is to say, in general, the
only acute V-grooves that reflect light from 𝑙 to 𝑣 are those with
cavity angles given by Eq. 4.

Fig. 6 shows the bounce vector 𝑏 from two different points on
the surface. Fig. 6 also illustrates that the position of the V-groove
in the 2D plane is irrelevant; at the microfacet scale, light transport
theory assumes 𝑙 and 𝑣 are constant vector fields. Thus, only vector
orientation is relevant.

We assume that the second bounce light transport is horizontal,
this necessarily constrains the orientation of the V-groove cavity
with respect to the macrosurfaceM. We can explicitly characterize
the cavity orientation as the bisector of the two microfacets with:

\𝑐 =
1
2
|\𝑙𝑟 − \𝑣𝑟 |. (6)
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Substituting Eq. 2 into this gives us the following

\𝑐 =
1
2

����𝜋 − \𝑙2
− \𝑣

2

���� (7)

=
1
2
\ℎ . (8)

This has a simple consequence on 𝑐 ; that is, light travels horizontally
within an acute V-groove cavity if and only if the cavity is oriented
along the vector

𝑐 =
ℎ + 𝑛
| |ℎ + 𝑛 | | . (9)

This specific choice of 𝑐 lies between two special cases of the
unconstrained V-cavity model. If 𝑐 = 𝑛, then we degenerate to the
case in which all V-grooves are aligned with the surface (which
is a model we are avoiding). If 𝑐 = ℎ, then the geometric masking
is minimised, which means that we would account for too much
energy on average. Our choice of 𝑐 is somewhat of a compromise
between these two cases; empirically it produces results that are
convincing, while also being inexpensive to compute.

4.2 Indirect multiple scattering Geometric Term
Now that microfacet structure has been characterized, we construct
an indirect geometric attenuation factor𝐺𝐼 using the cavity’s open-
ing angle \𝑔 and the cavity’s orientation 𝑐 .

Similar to the formulation in Lee et al. [2018], we next compute
offset distances (𝑑, 𝑑′, 𝑘, 𝑘′) from the unitary circle center 𝑂 with
respect of 𝑙⊥ (Fig. 7a). We further simplify Lee’s equations and only
take two bounces into consideration, where these distances are
computed as:

𝑑 = sin(\𝑙𝑐 + \𝑔/2), (10)
𝑑′ = sin(\𝑙𝑐 − \𝑔/2), (11)
𝑘 = sin(\𝑙𝑐 + 3\𝑔/2), (12)
𝑘′ = sin(\𝑙𝑐 + 5\𝑔/2), (13)

where the segment 𝐾𝐾 ′ is the portion of the left microfacet𝑚𝑙 that
if lit, would be able to transmit energy from 𝑙 to 𝑣 in 𝑧 bounces
(where 𝑧 = 2). In the segment 𝐿𝐾 , the light would bounce 𝑧 − 1
times. Moreover, in the segment 𝐾 ′𝑂 the light would bounce 𝑧 + 𝑛
times where 𝑛 ∈ N. Furthermore, the segment 𝐷𝐷′ is the portion
of the left microfacet𝑚𝑙 that is able to receive energy from 𝑙 . Thus,
in the traditional V-cavity theory used by [Lee et al. 2018], and [Xie
and Hanrahan 2018], the segment 𝐾𝐷′ is the only portion that is
able to transmit energy from 𝑙 to 𝑣 in exactly two bounces, because
the segment 𝐷′𝐾 ′ is under the shadow of the right microfacet𝑚𝑟 .

Therefore, the geometric attenuation factor from [Lee et al. 2018]
is equivalent to:

𝐺 = (𝑘 − 𝑘′)/𝑑. (14)

4.2.1 Asymmetrical Light Transport. We consider the microfacets
𝑚𝑙 and𝑚𝑟 as asymmetrical regarding their light transport. This
means that eachmicrofacet is reflective from one side (the one inside
the V-groove cavity) and transmissive from the other one (the one
outside of the V-groove cavity). Strictly speaking, asymmetrical
light transport is not physically-based; there is no existing material
that exhibits such behaviour. However, this assumption enables us

to indirectly compute a symmetrical light transport that is indeed
physically plausible.

As seen in Fig. 7b, neglecting shadowing by allowing light to
pass through the V-groove’s outside, is based on the assumption
that the microfacets are not connected to each other in the center
of a unitary circle. Thus, reflection could be a distant phenomenon
similar to the traditional Smith [1967] model that assumes masking
and shadowing as uncorrelated distant properties [Heitz 2014; Heitz
et al. 2016]. Therefore, for the right microfacet𝑚𝑟 it could exist a
corresponding distant microfacet𝑚𝑟

′ with the same orientation
lying in a position along the bouncing path 𝑏 that casts no shadows
on𝑚𝑙 (Fig. 7c). Furthermore, this implies that our geometric term
is unidirectional because it only accounts for masking from 𝑣 . Thus,
our second bounce approximation is brighter because assumes that
the microfacet𝑚𝑙 is always lit. The resulting overestimation help us
to compensate for the energy transmitted by further bounces (rows
b2 to b5 in Fig. 13) effectively getting our result closer to [Heitz et al.
2016] while simplifying our computation. This also means that our
method is non-reciprocal, a limitation that we later discuss.

Therefore, we compute our 𝐺𝐼 term with respect to the right
asymmetrical microfacet 𝑚𝑟 because the point 𝐾 projects along
the path vector 𝑏 to the point 𝑅. Similarly, the point 𝐾 ′ projects
along the path vector 𝑏 to the point 𝑃 (Fig. 7c) (note that this
simplification only occurs at the second bounce). So 𝑃 is inherently
the masking point from the view vector 𝑣 over𝑚𝑟 . Thus, our final
indirect geometry term 𝐺𝐼 can be formulated as 1 −𝑚𝑎𝑥 (0,𝑂𝑃)
(Fig. 8) where 𝑂𝑃 is obtained from

𝑂𝑃 =
𝑂𝑃 ′

𝑐𝑜𝑠 (𝛾) , (15)

where𝑂𝑃 ′ is the shadowing of 𝑣 and is derived by𝑂𝑃 ′ = 𝑠𝑖𝑛(\𝑣𝑐 −
\𝑚),𝛾 is the angle between 𝑣⊥ and𝑚𝑟 defined as𝛾 =

(
𝜋
2 − \𝑣𝑐

)
−\𝑚

where \𝑚 is defined as

\𝑚 =
\𝑔

2
. (16)

Thus, 𝐺𝐼 simplifies to

𝐺𝐼 = 1 −𝑚𝑎𝑥
(
0,
𝑠𝑖𝑛(\𝑣𝑐 − \𝑚)
𝑠𝑖𝑛(\𝑣𝑐 + \𝑚)

)
. (17)

Algorithm 1: Computation of 𝐺𝐼

𝑐 ← 𝑛𝑜𝑟𝑚𝑎𝑙𝑖𝑧𝑒 (ℎ + 𝑛)
\𝑣𝑐 ← 𝑎𝑐𝑜𝑠 (𝑐 · 𝑣)
\𝑚 ← (𝑃𝐼 − 𝑎𝑐𝑜𝑠 (𝑣 · 𝑙)) ∗ 0.25
𝑂𝑃 ← 𝑠𝑖𝑛(\𝑣𝑐 − \𝑚)/𝑠𝑖𝑛(\𝑣𝑐 + \𝑚)
𝐺𝐼 ← 1.0 −𝑚𝑎𝑥 (0.0,𝑂𝑃)

4.3 The full second bounce model
Comparatively, our constructions for𝐷𝐼 and 𝐹𝐼 terms are less exotic.
We choose our indirect normal distribution function 𝐷𝐼 (\𝑚) as a
standard Trowbridge-Reitz distribution (GGX) [2013; 1975; 2007]
using the cosine of \𝑚 (Eq. 16).

𝐷𝐼 =
𝛼2

𝜋 (𝑐𝑜𝑠2\𝑚 (𝛼2 − 1) + 1)2
(18)
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Figure 7: (a) In Zipin’s method, the segment 𝐾𝐷′ is the only portion of the microfacet 𝑂𝐿 that is able to transmit energy
from 𝑙 to 𝑣 in exactly two bounces. (b) We extend the portion of the microfacet𝑚𝑙 that is able to transmit energy from 𝑙 to 𝑣
through the segment 𝐾𝐾 ′, considering the microfacets as asymmetrical in terms of their light transport. This assumption
is not consistent with the physical behaviour of real materials. However, it is able to represent the reflection from a distant
microfacet𝑚𝑟

′ that casts no shadows over the microfacet𝑚𝑙 . (c) Our asymmetrical light transport assumption allows us to
estimate a physically-plausible light transport event, with the simplicity of Zipin’s geometric construction.
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Figure 8: Our indirect multiple scattering geometric term
𝐺𝐼 reduces to find the segment 𝑂𝑃 given the angle 𝛾 and the
segment 𝑂𝑃 ′ computed with Zipin’s approach.

effectively treating each asymmetric V-cavity as a single light
reflecting entity oriented in \𝑚 .

Finally, the indirect Fresnel term 𝐹𝐼 requires two separate Fres-
nel terms for each bounce. When computing the Schlick [1994]
approximation, the angles \𝑙𝑟 and \𝑣𝑟 , which are equivalent to the
(𝑖 · ℎ) (𝑖 is the incident angle, and their ℎ vector is aligned to their
normal) of each microfacet, should be used. To further reduce the
computation, we approximate the above process by simply squaring
the 𝐹 term from the direct contribution. Empirically we find the
difference caused by this approximation to be visually negligible.
Thus we take

𝐹𝐼 = 𝐹
2 . (19)

Combining all of these ingredients, we obtain our final indirect
multiple scattering specular term:

𝑓𝑠𝐼 =
𝐷𝐼𝐺𝐼 𝐹𝐼

2(𝑐 · 𝑣) . (20)

Note that this is an additive term, so we add Eq. 20 to Eq. 1 to obtain
our final multiple scattering specular lobe.

4.4 Importance Sampling
We used the default sampling technique in Mitsuba 0.6 based on
Heitz and d’Eon [2014] which restricts the sampling to the visible
microfacet normals. Their approach is based on the GGX distri-
bution and a one-way geometric function, our 𝐺𝐼 function is also
unidirectional, so we choose it as a practical solution for our offline
implementation. However, using the same importance sampling
could be valid for a direct scaling method such as Turquin [2018]
but this is not exactly our case, so deriving a more accurate impor-
tance sampling approach for our V-cavity model is an interesting
avenue for future work

5 RESULTS AND COMPARISONS
5.1 Experiment Configurations
To evaluate our method, we rendered images with a resolution of
512 × 512 with 512 samples per pixel in Mitsuba 0.6 [Jakob 2010]
(Windows 10, 64 bits) using an Intel(R) Core(TM) i9-11900K at
3.50GHz with 16 Logical Processors and 64 GB of RAM. Renders
from the competing methods are based on the original implemen-
tations provided by the corresponding authors.

As noted by Xie et al. [2021], the multiple scattering model from
Heitz et al. [2016] is less reliable in smooth surfaces, mainly due
to the variance caused by the stochastic nature of their method.
However, for high roughness surfaces Heitz et al. [2016], it is often
treated as an approximation of the ground truth and a reference
point of comparison for other methods.

5.2 Comparisons
To validate our model, we perform both quantitative and qualitative
experiments, comparing all of [Heitz et al. 2016; Lee et al. 2018;
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Walter et al. 2007; Wang et al. 2022] to our model. We render a sam-
ple scene [Pilo 2010] of a shaderball illuminated by an environment
map [Vogl 2010] for various roughness values.

Quantitative Comparisons. We use the Mean Square Error (MSE)
to quantitatively assess the results from different models. In Fig. 9
Top we show the MSE versus roughness to compare our method,
Lee et al. [2018], Walter et al. [2007], and Wang et al. [2022] against
Heitz et al. [2016]. The data shows that for lower roughness values,
our method and Wang et al. [2022] generate the lowest error, while
for higher roughness values our method generates less error and
more similar results to Heitz et al. [2016].

Qualitative Comparisons. Fig. 14 depicts a qualitative comparison
between the proposed approach for an achromatic material, [Walter
et al. 2007], [Lee et al. 2018],[Wang et al. 2022] and [Heitz et al.
2016] for different roughness values. The first row shows how the
standard method from [Walter et al. 2007] gradually loses energy
discarded by its single bounce geometry term. Generally, at low
roughness values, all models behave similar to the classic single
bounce GGX [Walter et al. 2007] due to the small contribution of
multiple scattering (a perfectly smooth surface with 𝛼 = 0 exhibits
no multiple scattering effect). The second row shows results from
Lee et al. [2018]. Although the results show lower error on average,
the error is heavily concentrated in the mirror direction (where ℎ
is closer to 𝑛). This results in a high-frequency specular response
that is not consistent with rough surfaces. This is mainly caused
by their assumption of V-cavities being aligned to the surface. The
third row demonstrates Wang et al. [2022], which is darker than
Heitz et al. [2016]. Fig. 14 shows that overall, the main advantage
of our method is that it better approximates light scattering in high
roughness, avoiding the mirror-like artifacts from Lee et al. [2018].
We also compared our method vs Turquin [2018] (Fig. 12) in a real-
time scenario.The key distinction between both methods is that
Turquin [2018] relies on a discretized approximation due to the
use of LUTs, while ours is continuous yet fast enough to be used
in production. More comparisons are provided in Fig. 11 where
copper and gold materials are rendered for Heitz et al. [2016], Lee
et al. [2018], Wang et al. [2022] and our method.

5.3 Efficiency
Fig. 9 Bottom shows the computation time for each model in Mit-
suba 0.6 [2010]. We rendered images with a resolution of 128 × 128
with 512 samples per pixel. We repeated each experiment three
times and averaged the results in order to reduce the variance
in our reported times. Our method is nearly as fast as Walter et
al. [2007], indicating its promise for real-time applications. Specifi-
cally, our second bounce approximation is an explicit solution and
can be implemented in a conventional rasterization pipeline as an
additional specular lobe (see Shadertoy and O3DE rendering results
in Fig.10 and 12), providing high-fidelity results without sacrificing
rendering speed. Unsurprisingly, the method of Heitz et al. [2016]
takes longer to render. Unexpectedly, we found Lee et al. [2018] to
be the most expensive model.

6 CONCLUSION
We have proposed a novel methodology for computing multiple
scattering reflection, accounting for first and second bounces of
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Figure 9: Top: MSE comparison between Walter et al. [2007],
Lee et al. [2018], Wang et al. [2022] and our model ver-
sus Heitz et al. [2016]. Bottom: Comparison on time costs
from the same methods vs our method rendered in Mitsuba
0.6 [2010]. Time in seconds.

light. Our proposed technique efficiently models the second bounce
multiple-scattering contribution. This greatly reduces the compu-
tational complexity compared to more sophisticated methods that
rely on Monte Carlo simulation and thus reduces render times. Our
results demonstrate the effectiveness and efficiency of our model in
compensating the energy loss. Furthermore, in contrast to existing
baselines [Lee et al. 2018; Wang et al. 2022; Xie and Hanrahan 2018],
our algorithm shows superiority in avoiding specular artifacts or
darkening at grazing angles and noise.

There are some limitations with our current approach. Firstly, by
relaxing the assumptions of the model, we overestimate the second
light bounce to recover most of the lost energy in later bounces.
However, as shown in Fig. 13, there is still a small proportion of
energy in the fourth and fifth bounce. Thus, our method is not able
to recover all the energy and fails to pass the furnace test (Fig. 10).
This is a trade-off between computation time and approximation
fidelity.Secondly, similar to Turquin [2018], our method does not
exhibit Helmholtz reciprocity hence, if used in a bi-directional path
tracer, one would ideally need to compute the corresponding im-
portance sampling procedure for the adjoint [Veach 1997] to avoid
variance due to unbalanced contribution from light and camera
paths.. Although we do not explore this option, this is an interesting
topic for future work. Finally, the phenomenon of transmission is
not covered by our model. We plan to investigate this in the future.
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Figure 10: (a) Although [Heitz et al. 2016; Wang et al. 2022]
pass the Furnace test, our method relies on the calculation
of first and an approximation of the second bounce which
leads to fail the Furnace test similar to GGX [Walter et al.
2007]. (b) Real-time results for our method and GGX [Walter
et al. 2007] in Shadertoy [Quilez and Jeremias 2017].
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Figure 11: To be consistent with reported results in Heitz et
al. [2016], we rendered gold and copper at the most realistic
roughness value for metals (𝛼 = 0.3). Lee et al. [2018] pro-
vides saturated results containing artifacts. In contrast, our
method is artifact-free and similar to Heitz et al. [2016].
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Figure 12: Comparison between Walter et al. [2007] (top)
Turquin [2018] (middle) and our method (bottom) at higher
roughness values. Both, Turquin [2018] and our method are
able to retrieve the missing energy compared with Walter et
al. [2007]. Rendered using O3DE [2023], illuminated by three
point lights and an environment map [Vogl 2010].

REFERENCES
Benedikt Bitterli and Eugene d’Eon. 2022. A Position-Free Path Integral for Homo-

geneous Slabs and Multiple Scattering on Smith Microfacets. Computer Graphics
Forum (2022). https://doi.org/10.1111/cgf.14589

James F. Blinn. 1977. Models of Light Reflection for Computer Synthesized Pictures.
SIGGRAPH Comput. Graph. (1977). https://doi.org/10.1145/965141.563893

Brent Burley. 2012. Physically-Based Shading at Disney. ACM SIGGRAPH Talks.
R. L. Cook and K. E. Torrance. 1982. A Reflectance Model for Computer Graphics.

ACM Trans. Graph. (1982), 7–24. https://doi.org/10.1145/357290.357293
Jonathan Dupuy, Eric Heitz, and Eugene d’Eon. 2016. Additional Progress towards

the Unification of Microfacet and Microflake Theories. In Proceedings of the EGSR.
Eurographics Association.

Kempf EK. 2012. Scanning Electron Micrograph of the surface of a kidney stone
showing tetragonal crystals of Weddellite.

Eric Heitz. 2014. Understanding the Masking-Shadowing Function in Microfacet-
Based BRDFs. Journal of Computer Graphics Techniques (JCGT) 3, 2 (2014), 48–107.
http://jcgt.org/published/0003/02/03/

Eric. Heitz and Eugene. d’Eon. 2014. Importance Sampling Microfacet-
Based BSDFs using the Distribution of Visible Normals. Computer
Graphics Forum 33, 4 (2014), 103–112. https://doi.org/10.1111/cgf.12417
arXiv:https://onlinelibrary.wiley.com/doi/pdf/10.1111/cgf.12417

Eric Heitz, Johannes Hanika, Eugene d’Eon, and Carsten Dachsbacher. 2016. Multiple-
Scattering Microfacet BSDFs with the Smith Model. ACM Trans. Graph. (2016).
https://doi.org/10.1145/2897824.2925943

Stephen Hill, StephenMcAuley, Laurent Belcour, Will Earl, Niklas Harrysson, Sébastien
Hillaire, Naty Hoffman, Lee Kerley, Jasmin Patry, Rob Pieké, et al. 2020. Physically
based shading in theory and practice. In ACM SIGGRAPH 2020 Courses. 1–12.

Wenzel Jakob. 2010. Mitsuba renderer. http://www.mitsuba-renderer.org.
Wenzel Jakob, Eugene d’Eon, Otto Jakob, and Steve Marschner. 2014. A Comprehensive

Framework for Rendering Layered Materials. ACM Trans. Graph. (2014). https:
//doi.org/10.1145/2601097.2601139

Csaba Kelemen and László Szirmay-Kalos. 2001. A Microfacet Based Coupled Specular-
Matte BRDF Model with Importance Sampling. In Eurographics Short Presentations
(2001).

Christopher Kulla and Alejandro Conty. 2017. Revisiting physically based shading at
imageworks. SIGGRAPH Course, Physically Based Shading (2017).

Joo Ho Lee, Adrian Jarabo, Daniel S. Jeon, Diego Gutierrez, and Min H. Kim. 2018.
Practical Multiple Scattering for Rough Surfaces. ACM Trans. Graph. (2018). https:
//doi.org/10.1145/3272127.3275016

Stephen McAuley, Stephen Hill, Adam Martinez, Ryusuke Villemin, Matt Pettineo,
Dimitar Lazarov, David Neubelt, Brian Karis, Christophe Hery, Naty Hoffman, and
Hakan Zap Andersson. 2013. Physically based shading in theory and practice. In
ACM SIGGRAPH 2013 Courses.

O3DE. 2023. O3DE - the open source real-time 3D engine. https://o3de.org/
Jonas Pilo. 2010. . https://www.mitsuba-renderer.org/scenes/matpreview.zip
Iñigo Quilez and Pol Jeremias. 2017. Shadertoy. (2017). https://www.shadertoy.com
Christophe Schlick. 1994. An Inexpensive BRDF Model for Physically-based Rendering.

Computer Graphics Forum (1994). https://doi.org/10.1111/1467-8659.1330233
Bruce G. Smith. 1967. Geometrical shadowing of a random rough surface. IEEE

Transactions on Antennas and Propagation 15 (1967), 668–671.
K. E. Torrance and E. M. Sparrow. 1967. Theory for Off-Specular Reflection From

Roughened Surfaces. J. Opt. Soc. Am. (Sep 1967). https://doi.org/10.1364/JOSA.57.
001105

T. S. Trowbridge and K. P. Reitz. 1975. Average irregularity representation of a rough
surface for ray reflection. J. Opt. Soc. Am. (1975). https://doi.org/10.1364/JOSA.65.
000531

Emmanuel Turquin. 2018. Practical multiple scattering compensation for microfacet
models. https://api.semanticscholar.org/CorpusID:221737278

Eric Veach. 1997. Robust Monte Carlo Methods for Light Transport Simulation. Ph. D.
Dissertation. Advisor(s) Guibas, Leonidas J.

Bernhard Vogl. 2010. . http://dativ.at/lightprobes/
Bruce Walter, Stephen R. Marschner, Hongsong Li, and Kenneth E. Torrance. 2007.

Microfacet Models for Refraction through Rough Surfaces. In Proceedings of EGSR
(EGSR’07). Eurographics Association.

Beibei Wang, Wenhua Jin, Jiahui Fan, Jian Yang, Nicolas Holzschuch, and Ling-Qi Yan.
2022. Position-Free Multiple-Bounce Computations for Smith Microfacet BSDFs.
ACM Trans. Graph. 4 (2022). https://doi.org/10.1145/3528223.3530112

Bartosz Woźniak. 2014. Titanium screw "volcano" pores coated with ZnO nanoparti-
cles.

Feng Xie, James Bieron, Pieter Peers, and Pat Hanrahan. 2021. Experimental Analysis
of Multiple Scattering BRDF Models. In SIGGRAPH Asia 2021 Technical Communi-
cations. Association for Computing Machinery. https://doi.org/10.1145/3478512.
3488601

Feng Xie and Pat Hanrahan. 2018. Multiple Scattering from Distributions of Specular
V-Grooves. ACM Trans. Graph. (2018). https://doi.org/10.1145/3272127.3275078

Feng Xie, Anton Kaplanyan, Warren Hunt, and Pat Hanrahan. 2019. Multiple scattering
using machine learning. In ACM SIGGRAPH 2019 Talks.

Richard B. Zipin. 1966. The apparent thermal radiation properties of an isothermal
V-groove with specularly reflecting walls. Journal of Research of the National Bureau
of Standards, Section C: Engineering and Instrumentation (1966).

https://doi.org/10.1111/cgf.14589
https://doi.org/10.1145/965141.563893
https://doi.org/10.1145/357290.357293
http://jcgt.org/published/0003/02/03/
https://doi.org/10.1111/cgf.12417
https://arxiv.org/abs/https://onlinelibrary.wiley.com/doi/pdf/10.1111/cgf.12417
https://doi.org/10.1145/2897824.2925943
https://doi.org/10.1145/2601097.2601139
https://doi.org/10.1145/2601097.2601139
https://doi.org/10.1145/3272127.3275016
https://doi.org/10.1145/3272127.3275016
https://o3de.org/
https://www.mitsuba-renderer.org/scenes/matpreview.zip
https://www.shadertoy.com
https://doi.org/10.1111/1467-8659.1330233
https://doi.org/10.1364/JOSA.57.001105
https://doi.org/10.1364/JOSA.57.001105
https://doi.org/10.1364/JOSA.65.000531
https://doi.org/10.1364/JOSA.65.000531
https://api.semanticscholar.org/CorpusID:221737278
http://dativ.at/lightprobes/
https://doi.org/10.1145/3528223.3530112
https://doi.org/10.1145/3478512.3488601
https://doi.org/10.1145/3478512.3488601
https://doi.org/10.1145/3272127.3275078


Fast-MSX: Fast Multiple Scattering Approximation SA Conference Papers ’23, December 12–15, 2023, Sydney, NSW, Australia

α =0.3 α = 0.5 α = 0.7α = 0.0

(b2)

(b3)

(b4)

α =0.1 α =0.2 α =0.4 α = 0.6 α = 0.9α = 0.8 α = 1.0

(b5)

(a)

(c)

Figure 13: (a) First bounce from [Heitz et al. 2016] equivalent to [Walter et al. 2007]. Rows (b2) to (b5), show the isolated
contribution of each bounce using [Heitz et al. 2016] method. (C) final result from [Heitz et al. 2016]. (𝛼) denotes the roughness.
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Figure 14: Qualitative comparison between [Walter et al. 2007], [Lee et al. 2018], [Wang et al. 2022], [Heitz et al. 2016], and our
method. [Lee et al. 2018] has notable specular artifacts at high roughness values (0.6 − 1.0) whereas our method is artifact free.
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